The aim of this study is to evaluate respective risk factors that upsurge rate of dropping out of high school. In the study, the independent variables (IV) are risk factors such as low grades, low perceived quality of school, low caregiver involvement with school and absenteeism. Whereas it has been evident that the dependent variables are the effect of risk factors
H1: There is a remarkable link between identified risk factors and increased rate of dropping out of high school.
H0: There is no remarkable link between identified risk factors and increased rate of dropping out of high school.
The study focuses on the attribution rates for high school in the area. The research will give a broad idea about increased rate of dropping out of high school. In order to conduct this research, random sampling method has been used in which 24 years 9 students has been selected from two chosen school i.e., Winterfield Grammar and Summertown High (Koo et al. 2016). The two risk factors have been examine by administer Perceived Quality of School Scale out of 100 and Caregiver Engagement Inventory out of 100. Once two factors are critically examine, overall grade percentage for each student in the sample based on all subjects result. At last, all the variable is calculated out of 100 and based on independent variable overall risk factors of each student need be calculated. Moreover, the entire calculated potential risk factors for each student will give significant impact of risk factors on each student.
From critical analysis of data, it can be stated that overall risk factors for each students need to be calculated vigilantly so that exponential rise of dropping out of high school can be analyzed positively. Most of the time, it has been evident that blunder error often witness at the time when an individual checks other work. Therefore, it is requisite to analysis the data critically and vigilantly in order to enhance efficiency of the study positively. Measurement error is one of the effective ways to make entire study more authentic and legitimate by positively mitigation of error in a significant order. Measurement error has been kept top in priority list so that maximum and relevant result can be calculated to enhance the efficiency of study. The above list of errors needs to consider so that possibility of error in design method can be minimized.
There are several types of test can be performed in order to evaluate risks factors to determine significance effects on rise in dropping out high school. In descriptive analysis, it has been evident that cumulative percent is changing from student to student and all the value is greater than 0.5. Moreover, it can be asserted that perceived quality and caregiver involvement are major factor in rising of dropping out students based on calculated risk factors of each student in a systematic manner.
On the other hand, one-sample statistics has also been performed for each risk factor in which the standard deviation of perceived quality is 4.6562 which is greater than test value 1. Therefore, it can be asserted that school needs to maintain perceived quality in order to enhance involvement of students and reduce rise in dropping out high school. It has been evident that perceived quality of school is one of the major factors that need to consider in reducing progressive increase of dropping out high school. On the other hand, mean difference of perceived quality is 68.889 which are larger than 1 that indicates that low grades and absenteeism are equally responsible in large number of dropping out students.
The significance of each risk factors in attrition rates for High schools so that it is easy to determine whether this risk factors are present in New South Wales High Schools or not. From the above descriptive and T- test methods, it has been witness that there is a significant relationship between relevant risk factors as well as increased rate of dropping out of high school. Therefore, it can be asserted that relevant risk factors need to concern in order to reduce increase in number of dropping out students of high school. Based on equivalent result, it is important to consider relevant factors to improve involvement of students.
There are several range of issues that can possible occur while conducting a pilot study. It has been found that these relevant issues may affect interpretation error or testing error. In order to make this research more effective and relevant,
majorly four issues are considered, which have been illustrated below are as follow:
Systematic error:- It is one of the most common issues that may occur while analyzing relevant outcome of research positively. On the other hand, it has been evident that values may be consistently too low or too high. There are four kinds of systematic error such as instrumental, environmental, observation and theoretical. From the above list of kind, observational and instrumental type of systematic error that may affect interpretation or testing error simultaneously.
Random error:- The research has been conducted among 9 students which have been selected randomly so there is a higher chance that random error can occur (Hayes et al. 2017). It has been evident that errors in judgment of a researcher may reduce the effectiveness of error eventually. Most of the time, random error may witness at the time of statistical analysis simultaneously.
Blunder:- The blunder error represents to a person who may take wrong sample or value while recording a measurement and reading a scale. It is not appreciable because a slightly mistake may reduce the efficiency of the study significantly.
Non responsive error :- This type of error mostly occurs or exists when an obtained sample differs from the original selected sample. In order to measure the main variable of interest, some data have been manipulated so that significance of risk factors can be critically evaluated in a systematically. Measurement
Measurement error is mostly generated by the measurement process and represent the difference between information require and information generated by the researcher.
Statistical analysis such as regression and t-test are need to use so that each data can be evaluated and analysis in a systematic order (Fitzpatrick et al. 2018). In order to analysis relevant data, descriptive statistical analysis tool has been considered that gives a deeper and better understanding of phenomenon.
The T-Test tables signifies that standard deviation mean is 1.730, which is greater than standard deviation 1 that can be asserted that after memory intervention has better result as compared to before memory intervention. On the other hand, 95% confidence interval also varies i.e., Lower is 86.23 and upper is 94.21 so it can be stated that famous cognitive psychologists improve the accuracy and efficiency of memory in a significant manner.
In order to understand change in memory among 9 students, regression test has also been performed that signifies positive change in memory power due to cognitive learning program. On the other hand, it has also been evident that unstandardized coefficient between before memory intervention and after memory intervention are 1.164 and 5.670. At last, it can be asserted that Anova and coefficient tables of regression test signifies that learning program changes memory power of a person based on standardized coefficients (Fitzpatrick et al. 2018). From the regression and T-test asserted that standardized memory test play as significant role in enhancing memory power of an individual through cognitive program to improve accuracy and efficiency of a person in a significant order.