In A Hurry? Get A Callback
We can use differentiation to find out the maxima and minimum values of the given function. Maxima and minimum values are also known as the critical values of the given function.When the first order derivative of the function that is dy / dx = 0 and the second order derivative of the function that is d^2y / dx^2 is greater than zero then the function is said to have a minimum value.
If the first order derivative of the function that is dy / dx = 0 and second order derivative of the function that is d^2y / dx^2 is less than zero then the function is said to have a maximum value. If the second order derivative of the function that is d^2 y / dx^2 is exactly equal to zero then the function is said to have both minimum or maximum values at one point.
Let us discuss maxima and minima with some of the examples.
Consider the first example be: find out the maxima and minimum values of the given function y = x^3 – 3x + 2.
The given mathematicsfunction is y = x^3 – 3x + 2. Now first let us differentiate the given function then we will get it as dy / dx = dy / dx (x^3 – 3x + 2) which is equal to dy / dx = 3x^2 – 3. Now let us equate the first differentiation to 0 then we will get it as 3x^2 – 3 = 0 in this take 3 as common then we will get it as 3(x^2 – 1) = 0 now take 3 to the left hand side then we will get it as x^2 – 1 = 0 this is in the form of (a)^2 – (b)^2 which is equals to (a + b)(a – b), so now we will get it as (x + 1)(x – 1). Now we will get the x values as 1 and -1. Now let us substitute the given x values in the given function then we will get it as if x = 1 then y = (1)^3 – 3(1) + 2 which is equals to 1 - + 2 = 0. If x = -1 then we will get it as y = (-1)^3 – 3(-1) + 2 which is equals to -1 + 3 + 2 = 4. These are known as stationary points. Now let us find out second order derivative then we will get it as d^2y / dx^2 = 6x. in this if we substitue x = -1 then we will get it as 6(-1) = -6 which is less than 0 so at this point the function has maximum value. If we substitute x = 1 we will get it as 6(1) = 6 which is greater than 0 so at this point the function has minimum value.
There is no deadline that can stop our writers from delivering quality assignments to the students.
Get authentic and unique assignments by using our 100% plagiarism-free services.
The experienced team of Live web tutors has got your back at all times of the day. Get connected with our customer support executives to receive instant and live solutions for your assignment problems.
We can build quality assignments in the subjects you're passionate about. Be it Engineering and Literature or Law and Marketing we have an expert writer for all.
Get premium service at a pocket-friendly rate. At live web tutors, we understand the tight budget of students and thus offer our services at highly affordable prices.
The service is largely beneficial and has been really helpful for uplifting my grades. It helped me acquire the right boost that my academic career required.
15 Mar 2021
Robin
Got the best editing experts in the market. I am overly satisfied.
15 Mar 2021
Luisa
Academic writing service incomplete package! They have the best writers, the best researchers, the best editors, basically everything that you need.
15 Mar 2021
Zendaya
Prompt support, great writer, and timely feedback. Recommended for all students.
15 Mar 2021
Ariadne
The Mathematics expert was astounding. They completed my mathematics assignment in just 45 minutes. I have never experienced anything like this ever before.
15 Mar 2021
Dixie