In A Hurry? Get A Callback
We solve the mathematicsintegral by using inverse chain rule method. Inverse chain rule method is very useful to integrate the function if given function in this form integral of [f(x)]^n f’(x). In order to integration by using inverse chain rule method we should be noticed that integrand consist of the product of derivative f’(x) of f(x) and should be a power of a function f(x).Then we find integral by increasing exponent unity and divide by increased index. Let us see the formula of integration by using inverse chain rule: - integral of [f(x)]^n * f’(x) = [f(x)]^n+1 / (n + 1), here n is not equal to -1.
Let us see some examples of integration by using inverse chain rule method h(x) = (4x^4 + 2x^3 + 5x^2 + x + 1)^8 * (16x^3 + 6x^2 + 10x + 1). Solution: - Given function h(x) = (4x^4 + 2x^3 + 5x^2 + x + 1)^8 * (16x^3 + 6x^2 + 10x + 1). Here we let f(x) = 4x^4 + 2x^3 + 5x^2 + x + 1 then f’(x) = 16x^3 + 6x^2 + 10x + 1. We see that given integral in this form [f(x)]^n * f’(x). So that integration of h(x) = (4x^4 + 2x^3 + 5x^2 + x + 1)^8 * (16x^3 + 6x^2 + 10x + 1), using formula integral of [f(x)]^n * f’(x) = [f(x)]^n+1 / (n + 1), let us take integration and gate, Integral of (4x^4 + 2x^3 + 5x^2 + x + 1)^8 * (16x^3 + 6x^2 + 10x + 1) = (4x^4 + 2x^3 + 5x^2 + x + 1)^9 / 9 + C, here C is any constant..
By using integration inverse chain rule, we can integrate difficult integration easily. Let we see another example: -find integration of sin^5 x * cos x by using inverse chain rule method.Solution: - Given integral function sin^5 x * cos x, Here we take f(x) = sinx then f’(x) = cosx. Now we can write in this form of f(x) ^n f’(x). So we use fomula integration by inverse chain rule ` integral of [f(x)]^n * f’(x) = [f(x)]^n+1 / (n + 1). Now bu using this formula integral function sin^5 x * cos x = sin^6 x / 6 + C, here C is any constant. Let we see another example: - Find the integration by using chain rule method if h(x) = (3x + 1) / (x^3 + x + 4). Solution: - Given function h(x) = (3x^2 + 1) / (x^3 + x + 4), Here we let f(x) = x^3 + x + 4, now f’(x) = 3x^2 + 1, So we use formula and gate Integral of (3x + 1) / (x^3 + x + 4) = log (x^3 + x + 4) + C.
This is how the inverse chain rule can used. The illustrations stated above shows the steps of finding the integration of any function byusing the chain rule method.
There is no deadline that can stop our writers from delivering quality assignments to the students.
Get authentic and unique assignments by using our 100% plagiarism-free services.
The experienced team of Live web tutors has got your back at all times of the day. Get connected with our customer support executives to receive instant and live solutions for your assignment problems.
We can build quality assignments in the subjects you're passionate about. Be it Engineering and Literature or Law and Marketing we have an expert writer for all.
Get premium service at a pocket-friendly rate. At live web tutors, we understand the tight budget of students and thus offer our services at highly affordable prices.
The service is largely beneficial and has been really helpful for uplifting my grades. It helped me acquire the right boost that my academic career required.
15 Mar 2021
Robin
Got the best editing experts in the market. I am overly satisfied.
15 Mar 2021
Luisa
Academic writing service incomplete package! They have the best writers, the best researchers, the best editors, basically everything that you need.
15 Mar 2021
Zendaya
Prompt support, great writer, and timely feedback. Recommended for all students.
15 Mar 2021
Ariadne
The Mathematics expert was astounding. They completed my mathematics assignment in just 45 minutes. I have never experienced anything like this ever before.
15 Mar 2021
Dixie